The search functionality is under construction.

Author Search Result

[Author] Mineo KANEKO(28hit)

21-28hit(28hit)

  • Two-Dimensional Quadrilateral Recursive Digital Filters with Parallel Structure--Synthesis and Parallel Processing--

    Tsuyoshi ISSHIKI  Hiroaki KUNIEDA  Mineo KANEKO  

     
    PAPER

      Vol:
    E75-A No:3
      Page(s):
    352-361

    This paper proposes a designing algorithm for quadrilateral recursive filters which consist of four quarter-plane filters in the four quadrants. This can realize a perfect zero-phase filtering which is essential for image processing. Furthermore, several parallel processing algorithms capable of performing under very high parallel efficiency are developed on line-connected and mesh-connected processor arrays. By these proposals, the advantage of two-dimensional non-causal zero-phase recursive digital filters is made clear.

  • Reliable Data Routing for Spatial-Temporal TMR Multiprocessor Systems

    Mineo KANEKO  

     
    PAPER-Fault Tolerance

      Vol:
    E84-D No:12
      Page(s):
    1790-1800

    This paper treats the data routing problem for fault-tolerant systolic arrays based on Triple Modular Redundancy (TMR) in mixed spatial-temporal domain. The number of logical links required in TMR systolic array is basically 9 times larger than the one for corresponding non-fault-tolerant systolic array. The link sharing is a promising method for reducing the number of physical links, which may, however, degrade the fault tolerance of TMR system. This paper proposes several robust data-routing and resource-sharing (plural data transfers share a physical link, or a data transfer and a computational task share a PE as a relay node for the former and as a processor for the latter), by which certain classes of fault tolerant property will be guaranteed. A stage and a dominated set are introduced to characterize the features of routing/resource-sharing in TMR systems, and conditions on the dominated set and their resultant fault-tolerant properties are derived.

  • Checking Scheme for ABFT Systems Based on Modified PD Graph under an Error Generation/Propagation Model

    Choon-Sik PARK  Mineo KANEKO  

     
    PAPER

      Vol:
    E82-A No:6
      Page(s):
    1002-1008

    This paper treats a fault detection/location of multi-processor systems, and we present a checking scheme based on Modified Processor-Data (MPD) graph with considering an error generation/propagation model for Algorithm-Based Fault Tolerant (ABFT) systems. The error propagation model considered here allows a computation result with multiple (more than one) erroneous inputs to be either erroneous or error-free. Also a basic algorithm for constructing checks for single-fault locatable/two-fault detectable ABFT systems based on the checking scheme is described with design examples.

  • MMAPC: An Effective Mixed-Mode Circuit Simulator Using Dynamic Circuit Partition Process

    Ben CHEN  Mahoki ONODA  Mineo KANEKO  

     
    PAPER-VLSI Design Technology

      Vol:
    E71-E No:4
      Page(s):
    388-393

    With the development of LSI technologies, conventional circuit simulation using only single type of method has become unsatisfactory, i.e. circuit-level analysis based on device model spends much simulation time and relaxation methods have the problems on their accuracy. Therefore, it is necessary to develop the better methods to realize both high-speed and good accuracy. In this paper, a mixed-mode circuit-timing simulation method has been studied. It uses a new kind of automatic circuit partition approach--dynamic circuit partition process based on checking coupling factors between circuit nodes at every time point for better convergence. This method is based on examining the characteristic of circuit equations rather than circuit topology or function blocks. A mixed-mode simulation program--MMAPC for transient analysis of CMOS large-scale circuit has been developed and some simulation examples have been performed. The results show that MMAPC can be more than two orders of magnitude faster than a standard" circuit-level simulator (SPICE-like) while providing comparable waveform accuracy, and has better convergence property than general timing-level simulators.

  • Backward-Data-Direction Clocking and Relevant Optimal Register Assignment in Datapath Synthesis

    Keisuke INOUE  Mineo KANEKO  Tsuyoshi IWAGAKI  

     
    PAPER-VLSI Design Technology and CAD

      Vol:
    E94-A No:4
      Page(s):
    1067-1081

    For recent and future nanometer-technology VLSIs, static and dynamic delay variations become a serious problem. In many cases, the hold timing constraint, as well as the setup timing constraint, becomes critical for latching a correct signal under delay variations. While the timing violation due to the fail of the setup timing constraint can be fixed by tuning a clock frequency or using a delayed latch, the timing violation due to the fail of the hold timing constraint cannot be fixed by those methods in general. Our approach to delay variations (in particular, the hold timing constraint) proposed in this paper is a novel register assignment strategy in high-level synthesis, which guarantees safe clocking by Backward-Data-Direction (BDD) clocking. One of the drawbacks of the proposed register assignment is the increase in the number of required registers. After the formulation of this new register minimization problem, we prove NP-hardness of the problem, and then derive an integer linear programming formulation for the problem. The proposed method receives a scheduled data flow graph, and generates a datapath having (1) robustness against delay variations, which is ensured by BDD-based register assignment, and (2) the minimum possible number of registers. Experimental results show the effectiveness of the proposed method for some benchmark circuits.

  • Simultaneous Optimization of Skew and Control Step Assignments in RT-Datapath Synthesis

    Takayuki OBATA  Mineo KANEKO  

     
    PAPER-High-Level Synthesis and System-Level Design

      Vol:
    E91-A No:12
      Page(s):
    3585-3595

    As well as the schedule affects system performance, the control skew, i.e., the arrival time difference of control signals between registers, can be utilized for improving the system performance, enhancing robustness against delay variations, etc. The simultaneous optimization of the control step assignment and the control skew assignment is more powerful technique in improving performance. In this paper, firstly, we prove that, even if the execution sequence of operations which are assigned to the same resource is fixed, the simultaneous optimization problem under a fixed clock period is NP-hard. Secondly, we propose a heuristic algorithm for the simultaneous control step and skew optimization under given clock period, and we show how much the simultaneous optimization improves system performance. This paper is the first one that uses the intentional skew to shorten control steps under a specified clock period. The proposed algorithm has the potential to play a central role in various scenarios of skew-aware high level synthesis.

  • Adaptive AR Spectral Estimation Based on Wavelet Decomposition of the Linear Prediction Error

    Fernando Gil V. RESENDE Jr.  Keiichi TOKUDA  Mineo KANEKO  

     
    PAPER-Digital Signal Processing

      Vol:
    E79-A No:5
      Page(s):
    665-673

    A new adaptive AR spectral estimation method is proposed. While conventional least-squares methods use a single windowing function to analyze the linear prediction error, the proposed method uses a different window for each frequency band of the linear prediction error to define a cost function to be meinemized. With this approach, since time and frequency resolutions can be traded off throughout the frequency spectrum, an improvement on the precision of the estimates is achieved. In this paper, a wavelet-like time-frequency resolution grid is used so that low-frequency components of the linear prediction error are analyzed through long windows and high-frequency components are analyzed through short ones. To solve the optimization problem for the new cost function, special properties of the correlation matrix are used to derive an RLS algorithm on the order of M2, where M is the number of parameters of the AR model. Computer simulations comparing the performance of conventional RLS and the proposed methods are shown. In particular, it can be observed that the wavelet-based spectral estimation method gives fine frequency resolution at low frequencies and sharp time resolution at high frequencies, while with conventional methods it is possible to obtain only one of these characteristics.

  • A Systematic Design of Fault Tolerant Systolic Arrays Based on Triple Modular Redundancy in Time-Processor Space

    Mineo KANEKO  Hiroyuki MIYAUCHI  

     
    PAPER-Fault Tolerant Computing

      Vol:
    E79-D No:12
      Page(s):
    1676-1689

    A systematic procedure to configure faulttolerant systolic arrays based on Triplicated Triple Modular Redundancy is proposed. The design procedure consists of the triplication of the dependence graph which is formed from a target regular algorithm and the transformation onto physical time-processor domain. The resultant systolic arrays tolerate failures not only on processing elements but also on communication links. While it needs sophisticated connection scheme between processing elements to guarantee the fault-tolerance on communication links, the link complexity is possibly reduced by optimizing redundant operation scheme. Unconstrained and constrained link minimization problems are introduced, and the possibility and the constraints required for link complexity reduction are investigated.

21-28hit(28hit)